lunes, 26 de julio de 2010

El nombre Wi-Fi

Aunque se pensaba que el término viene de Wireless Fidelity como equivalente a Hi-Fi, High Fidelity, que se usa en la grabación de sonido, realmente la WECA: contrató a una empresa de publicidad para que le diera un nombre a su estándar, de tal manera que fuera fácil de identificar y recordar. Phil Belanger, miembro fundador de Wi-Fi Alliance que apoyó el nombre Wi-Fi escribió

“Wi-Fi y el "Style logo" del Ying Yang fueron inventados por la agencia Interbrand. Nosotros (WiFi Alliance) contratamos Interbrand para que nos hiciera un logotipo y un nombre que fuera corto, tuviera mercado y fuera fácil de recordar. Necesitábamos algo que fuera algo más llamativo que “IEEE 802.11b de Secuencia Directa”. Interbrand creó nombres como “Prozac”, “Compaq”, “OneWorld”, “Imation”, por mencionar algunas. Incluso inventaron un nombre para la compañía: VIVATO.”
Phil Belanger

Estándares que certifica Wi-Fi

Existen diversos tipos de Wi-Fi, basado cada uno de ellos en un estándar IEEE802.11 aprobado. Son los siguientes:

  • En la actualidad ya se maneja también el estándar IEEE 802.11a, conocido como WIFI 5, que opera en la banda de 5 GHz y que disfruta de una operatividad con canales relativamente limpios. La banda de 5 GHz ha sido recientemente habilitada y, además, no existen otras tecnologías (Bluetooth, microondas, ZigBee, WUSB) que la estén utilizando, por lo tanto existen muy pocas interferencias. Su alcance es algo menor que el de los estándares que trabajan a 2.4 GHz (aproximadamente un 10%), debido a que la frecuencia es mayor (a mayor frecuencia, menor alcance).
  • Un primer borrador del estándar IEEE 802.11n que trabaja a 2.4 GHz y a una velocidad de 108 Mbps. Sin embargo, el estándar 802.11g es capaz de alcanzar ya transferencias a 108 Mbps, gracias a diversas técnicas de aceleramiento. Actualmente existen ciertos dispositivos que permiten utilizar esta tecnología, denominados Pre-N.

Existen otras tecnologías inalámbricas como Bluetooth que también funcionan a una frecuencia de 2.4 GHz, por lo que puede presentar interferencias con Wi-Fi. Debido a esto, en la versión 1.2 del estándar Bluetooth por ejemplo se actualizó su especificación para que no existieran interferencias con la utilización simultánea de ambas tecnologías, además se necesita tener 40.000 k de velocidad.

Seguridad y fiabilidad

Uno de los problemas más graves a los cuales se enfrenta actualmente la tecnología Wi-Fi es la progresiva saturación del espectro radioeléctrico, debido a la masificación de usuarios, esto afecta especialmente en las conexiones de larga distancia (mayor de 100 metros). En realidad Wi-Fi está diseñado para conectar ordenadores a la red a distancias reducidas, cualquier uso de mayor alcance está expuesto a un excesivo riesgo de interferencias.

Un muy elevado porcentaje de redes son instalados sin tener en consideración la seguridad convirtiendo así sus redes en redes abiertas (o completamente vulnerables a los crackers), sin proteger la información que por ellas circulan.

Existen varias alternativas para garantizar la seguridad de estas redes. Las más comunes son la utilización de protocolos de cifrado de datos para los estándares Wi-Fi como el WEP, el WPA, o el WPA2 que se encargan de codificar la información transmitida para proteger su confidencialidad, proporcionados por los propios dispositivos inalámbricos. La mayoría de las formas son las siguientes:

  • WEP, cifra los datos en su red de forma que sólo el destinatario deseado pueda acceder a ellos. Los cifrados de 64 y 128 bits son dos niveles de seguridad WEP. WEP codifica los datos mediante una “clave” de cifrado antes de enviarlo al aire. Este tipo de cifrado no está muy recomendado, debido a las grandes vulnerabilidades que presenta, ya que cualquier cracker puede conseguir sacar la clave.
  • WPA: presenta mejoras como generación dinámica de la clave de acceso. Las claves se insertan como de dígitos alfanuméricos, sin restricción de longitud
  • IPSEC (túneles IP) en el caso de las VPN y el conjunto de estándares IEEE 802.1X, que permite la autenticación y autorización de usuarios.
  • Filtrado de MAC, de manera que sólo se permite acceso a la red a aquellos dispositivos autorizados. Es lo más recomendable si solo se va a usar con los mismos equipos, y si son pocos.
  • Ocultación del punto de acceso: se puede ocultar el punto de acceso (Router) de manera que sea invisible a otros usuarios.
  • El protocolo de seguridad llamado WPA2 (estándar 802.11i), que es una mejora relativa a WPA. En principio es el protocolo de seguridad más seguro para Wi-Fi en este momento. Sin embargo requieren hardware y software compatibles, ya que los antiguos no lo son.

Sin embargo, no existe ninguna alternativa totalmente fiable, ya que todas ellas son susceptibles de ser vulneradas.

Dispositivos

Existen varios dispositivos que permiten interconectar elementos Wi-Fi, de forma que puedan interactuar entre sí. Entre ellos destacan los routers, puntos de acceso, para la emisión de la señal Wi-Fi y las tarjetas receptoras para conectar a la computadora personal, ya sean internas (tarjetas PCI) o bien USB.

  • Los puntos de acceso funcionan a modo de emisor remoto, es decir, en lugares donde la señal Wi-Fi del router no tenga suficiente radio se colocan estos dispositivos, que reciben la señal bien por un cable UTP que se lleve hasta él o bien que capturan la señal débil y la amplifican (aunque para este último caso existen aparatos especializados que ofrecen un mayor rendimiento).
  • Los router son los que reciben la señal de la línea ofrecida por el operador de telefonía. Se encargan de todos los problemas inherentes a la recepción de la señal, incluidos el control de errores y extracción de la información, para que los diferentes niveles de red puedan trabajar. Además, el router efectúa el reparto de la señal, de forma muy eficiente.
Router WiFi.
  • Además de routers, hay otros dispositivos que pueden encargarse de la distribución de la señal, aunque no pueden encargarse de las tareas de recepción, como pueden ser hubs y switches. Estos dispositivos son mucho más sencillos que los routers, pero también su rendimiento en la red de área local es muy inferior
  • Los dispositivos de recepción abarcan tres tipos mayoritarios: tarjetas PCI, tarjetas PCMCIA y tarjetas USB:
    Tarjeta USB para Wi-Fi.
    • Las tarjetas PCI para Wi-Fi se agregan a los ordenadores de sobremesa. Hoy en día están perdiendo terreno debido a las tarjetas USB.
    • Las tarjetas PCMCIA son un modelo que se utilizó mucho en los primeros ordenadores portátiles, aunque están cayendo en desuso, debido a la integración de tarjeta inalámbricas internas en estos ordenadores. La mayor parte de estas tarjetas solo son capaces de llegar hasta la tecnología B de Wi-Fi, no permitiendo por tanto disfrutar de una velocidad de transmisión demasiado elevada
    • Las tarjetas USB para Wi-Fi son el tipo de tarjeta más común que existe y más sencillo de conectar a un pc, ya sea de sobremesa o portátil, haciendo uso de todas las ventajas que tiene la tecnología USB. Además, algunas ya ofrecen la posibilidad de utilizar la llamada tecnología PreN, que aún no está estandarizada.
    • También existen impresoras, cámaras Web y otros periféricos que funcionan con la tecnología Wi-Fi, permitiendo un ahorro de mucho cableado en las instalaciones de redes.

En relación con los drivers, existen directorios de "Chipsets de adaptadores Wireless".

Ventajas y desventajas

Las redes Wi-Fi poseen una serie de ventajas, entre las cuales podemos destacar:

  • Al ser redes inalámbricas, la comodidad que ofrecen es muy superior a las redes cableadas porque cualquiera que tenga acceso a la red puede conectarse desde distintos puntos dentro de un rango suficientemente amplio de espacio.
  • Una vez configuradas, las redes Wi-Fi permiten el acceso de múltiples ordenadores sin ningún problema ni gasto en infraestructura, no así en la tecnología por cable.
  • La Wi-Fi Alliance asegura que la compatibilidad entre dispositivos con la marca Wi-Fi es total, con lo que en cualquier parte del mundo podremos utilizar la tecnología Wi-Fi con una compatibilidad total. Esto no ocurre, por ejemplo, en móviles.

Pero como red inalámbrica, la tecnología Wi-Fi presenta los problemas intrínsecos de cualquier tecnología inalámbrica. Algunos de ellos son:

  • Una de las desventajas que tiene el sistema Wi-Fi es una menor velocidad en comparación a una conexión con cables, debido a las interferencias y pérdidas de señal que el ambiente puede acarrear.
  • La desventaja fundamental de estas redes existe en el campo de la seguridad. Existen algunos programas capaces de capturar paquetes, trabajando con su tarjeta Wi-Fi en modo promiscuo, de forma que puedan calcular la contraseña de la red y de esta forma acceder a ella. Las claves de tipo WEP son relativamente fáciles de conseguir con este sistema. La alianza Wi-Fi arregló estos problemas sacando el estándar WPA y posteriormente WPA2, basados en el grupo de trabajo 802.11i. Las redes protegidas con WPA2 se consideran robustas dado que proporcionan muy buena seguridad. De todos modos muchas compañías no permiten a sus empleados tener una red inalámbrica. Este problema se agrava si consideramos que no se puede controlar el área de cobertura de una conexión, de manera que un receptor se puede conectar desde fuera de la zona de recepción prevista (e.g. desde fuera de una oficina, desde una vivienda colindante).
  • Hay que señalar que esta tecnología no es compatible con otros tipos de conexiones sin cables como Bluetooth, GPRS, UMTS, etc.
Agustin Egui
CAF

CAMPO MAGNÉTICO DE LA CORRIENTE ALTERNA

Las cargas eléctricas o electrones que fluyen por el cable o conductor de un circuito de corriente alterna (C.A.) no lo hacen precisamente por el centro o por toda el área del mismo, como ocurre con la corriente continua o directa (CD), sino que se mueven más bien próximos a su superficie o por su superficie, dependiendo de la frecuencia que posea dicha corriente, provocando la aparición de un campo magnético a su alrededor.






A.- Sección transversal de un cable o conductor de cobre. B.- Corriente eléctrica de baja frecuencia. circulando por el cable. C.- A medida que se incrementa la frecuencia, la corriente tiende a fluir más. hacia la superficie del cable. D.- A partir de los 30 mil ciclos por segundo (30 kHz) de frecuencia de la. corriente, se generan ondas electromagnéticas de radio, que se propagan desde la superficie del cable. hacia el espacio.



Un generador de corriente alterna (también llamado “alternador”) normalmente genera corriente con una frecuencia de 50 ó 60 hertz (Hz), de acuerdo con cada país en específico, entregándola a la red eléctrica industrial y doméstica.

Sin embargo, si se dispone de un oscilador electrónico como el que emplean las plantas o estaciones transmisoras de radiodifusión comercial, a partir del momento en que la frecuencia de la corriente que genera dicho oscilador supera los 30 mil ciclos por segundo (30 kHz), el campo magnético que producen las cargas eléctricas o electrones que fluyen por el conductor que hace función de antena, comienza a propagarse por el espacio en forma de ondas de radiofrecuencia.

La forma en que se expanden esas ondas de radio, guarda similitud con lo que ocurre cuando tiramos una piedra en la superficie tranquila de un lago o estanque de agua: a partir del punto donde cae la piedra, se generan una serie de ondas que se extienden hasta desaparecer o llegar la orilla.





A partir del punto donde cae una piedra en la superficie de un líquido, se generan una serie de olas que. guardan estrecha semejanza con la forma en que surgen y se propagan las ondas de radiofrecuencia a. partir que salen de la antena de un transmisor de radio.


A diferencia de los generadores o alternadores que entregan tensiones o voltajes altos y frecuencias bajas, los circuitos osciladores electrónicos funcionan con tensiones o voltajes relativamente bajos, pero que generan corrientes de altas frecuencias capaces de propagarse a largas distancias a través del espacio. Esas ondas de radiofrecuencia se utilizan como portadoras para transportar, a su vez, otras ondas de baja frecuencia como las de sonido (ondas de audiofrecuencia producidas la voz, la música y todo tipo de sonidos), que por sí solas son incapaces de recorrer largas distancias.

En las transmisiones inalámbricas, al proceso de inyectar o añadir señales de baja frecuencia o audiofrecuencia (como las del sonido) a una onda portadora alta frecuencia se le denomina "modulación de la señal de audio". Mediante ese procedimiento una onda de radiofrecuencia que contenga señales de audio se puede modular en amplitud (Amplitud Modulada – AM) o en frecuencia (Frecuencia Modulada – FM).



A.- Onda de radiofrecuencia.

B.-
Onda de audiofrecuencia.

C.-
La onda de baja frecuencia o audiofrecuencia (B), inyectada en. la onda de alta frecuencia o radiofrecuencia (A). Por medio de esa. combinación se obtiene una señal de radio de amplitud modulada. (AM), capaz de transportar sonidos por vía inalámbrica a largas. distancias para ser captados por un radiorreceptor.

D.-
La onda de audiofrecuencia (B) modulada en frecuencia, obteniéndose una señal de radio de frecuencia modulada (FM), empleada por las estaciones de radiodifusión y también de. televisión para transmitir el audio que acompaña las señales de. video.



Debido a que las corrientes de alta frecuencia no circulan por el interior de los conductores, sino por su superficie externa, en la fabricación de antenas se emplean tubos metálicos con el interior hueco. Esto lo podemos comprobar observando la forma en que están construidas las antenas telescópicas que incorporan los radios y televisores portátiles.

El principio de recepción de ondas de radiofrecuencia es similar al de su transmisión, por tanto, como la corriente que se induce en las antenas receptoras de ondas de radio y televisión es una señal de alta frecuencia procedente de la antena transmisora, su interior es también hueco.

Agustin Egui
CAF

Frecuencia modulada

Una señal moduladora (la primera) puede transmitirse modulando una onda portadora en AM (la segunda) o FM (la tercera), entre otras.

En telecomunicaciones, la frecuencia modulada (FM) o modulación de frecuencia es una modulación angular que transmite información a través de una onda portadora variando su frecuencia (contrastando esta con la amplitud modulada o modulación de amplitud (AM), en donde la amplitud de la onda es variada mientras que su frecuencia se mantiene constante). En aplicaciones analógicas, la frecuencia instantánea de la señal modulada es proporcional al valor instantáneo de la señal moduladora. Datos digitales pueden ser enviados por el desplazamiento de la onda de frecuencia entre un conjunto de valores discretos, una modulación conocida como FSK.

La frecuencia modulada es usada comúnmente en las radiofrecuencias de muy alta frecuencia por la alta fidelidad de la radiodifusión de la música y el hablaRadio FM). El sonido de la televisión analógica también es difundido por medio de FM. Un formulario de banda estrecha se utiliza para comunicaciones de voz en la radio comercial y en las configuraciones de aficionados. El tipo usado en la radiodifusión FM es generalmente llamado amplia-FM o W-FM (de la siglas en inglés "Wide-FM"). En la radio de dos vías, la banda estrecha o N-FM (de la siglas en inglés "Narrow-FM") es utilizada para ahorrar banda estrecha. Además, se utiliza para enviar señales al espacio. (véase

La frecuencia modulada también se utiliza en las frecuencias intermedias de la mayoría de los sistemas de vídeo analógico, incluyendo VHS, para registrar la luminancia (blanco y negro) de la señal de video. La frecuencia modulada es el único método factible para la grabación de video y para recuperar de la cinta magnética sin la distorsión extrema, como las señales de vídeo con una gran variedad de componentes de frecuencia - de unos pocos hercios a varios megahercios, siendo también demasiado amplia para trabajar con equalisers con la deuda al ruido electrónico debajo de -60 dB. La FM también mantiene la cinta en el nivel de saturación, y, por tanto, actúa como una forma de reducción de ruido del audio, y un simple corrector puede enmascarar variaciones en la salida de la reproducción, y que la captura del efecto de FM elimina a través de impresión y pre-eco. Un piloto de tono continuo, si se añade a la señal - que se hizo en V2000 o video 2000 y muchos formatos de alta banda - puede mantener el temblor mecánico bajo control y ayudar al tiempo de corrección.

Dentro de los avances más importantes que se presentan en las comunicaciones, el mejoramiento de un sistema de transmisión y recepción en características como la relación señal – ruido, sin duda es uno de los más importantes, pues permite una mayor seguridad en las mismas. Es así como el paso de Modulación en Amplitud (A.M.), a la Modulación en Frecuencia (F.M.), establece un importante avance no solo en el mejoramiento que presenta la relación señal ruido, sino también en la mayor resistencia al efecto del desvanecimiento y a la interferencia, tan comunes en A.M.

La frecuencia modulada también se utiliza en las frecuencias de audio para sintetizar sonido. Está técnica, conocida como síntesis FM, fue popularizada a principios de los sintetizadores digitales y se convirtió en una característica estándar para varias generaciones de tarjetas de sonido de computadoras personales.


Aplicaciones en radio

Dentro de las aplicaciones de F.M. se encuentra la radio, en donde los receptores emplean un detector de FM y exhiben un fenómeno llamado efecto de captura, en donde el sintonizador es capaz de recibir la señal más fuerte de las que transmiten en la misma frecuencia. Sin embargo, la falta de selectividad por las desviaciones de frecuencia causa que una señal sea repentinamente tomada por otra de un canal adyacente. Otra de las características que presenta F.M., es la de poder transmitir señales estereofónicas, y entre otras de sus aplicaciones se encuentran la televisión, como sub-portadora de sonido; en micrófonos inalámbricos; y como ayuda en navegación aérea.

Un ejemplo de modulación de frecuencia. El diagrama superior muestra la señal moduladora superpuestas a la onda portadora. El diagrama inferior muestra la señal modulada resultante.

Edwin Armstrong presentó su estudio: "Un Método de reducción de Molestias en la Radio Mediante un Sistema de Modulación de Frecuencia", que describió por primera vez a la FM, antes de que la sección neoyorquina del Instituto de Ingenieros de Radio el 6 de noviembre de 1935. El estudio fue publicado en 1936.[1]

La FM de onda larga (W-FM) requiere un mayor ancho de banda que la modulación de amplitud para una señal moduladora equivalente, pero a su vez hace a la señal más resistente al ruido y la interferencia. La modulación de frecuencia es también más resistente al fenómeno del desvanecimiento, muy común en la AM. Por estas razones, la FM fue escogida como el estándar para la transmisión de radio de alta fidelidad, resultando en el término "Radio FM" (aunque por muchos años la BBC la llamó "Radio VHF", ya que la radiodifusión en FM usa una parte importante de la banda VHF).

Los receptores de radio FM emplean un detector para señales FM y exhiben un fenómeno llamado efecto de captura, donde el sintonizador es capaz de recibir la señal más fuerte de las que transmitan en la misma frecuencia. Sin embargo, la desviación de frecuencia o falta de selectividad puede causar que una estación o señal sea repentinamente tomada por otra en un canal adyacente. La desviación de frecuencia generalmente constituyó un problema en receptores viejos o baratos, mientras que la selectividad inadecuada puede afectar a cualquier aparato.

Una señal FM también puede ser usada para transportar una señal estereofónicaFM estéreo) No obstante, esto se hace mediante el uso de multiplexación y demultiplexación antes y después del proceso de la FM. Se compone una señal moduladora (en banda base) con la suma de los dos canales (izquierdo y derecho), y se añande un tono piloto a 19 kHz. Se modula a continuación una señal diferencia de ambos canales a 38 kHz en doble banda lateral, y se le añade a la moduladora anterior. De este modo se consigue compatibilidad con receptores antiguos que no sean estereofónicos, y además la implementación del demodulador es muy sencilla. (vea

Una amplificación de conmutación de frecuencias radiales de alta eficiencia puede ser usada para transmitir señales FM (y otras señales de amplitud constante). Para una fuerza de señal dada (medida en la antena del receptor), los amplificadores de conmutación utilizan menos potencia y cuestan menos que un amplificador lineal. Esto le da a la FM otra ventaja sobre otros esquemas de modulación que requieren amplificadores lineales, como la AM y la QAM.

Otras aplicaciones

La modulación de frecuencia encuentra aplicación en gran cantidad de sistemas de comunicación. Aparte de la FM de radiodifusión, entre 88 y 108 MHz, la separación entre dos canales adyacentes es de 200 kHz y la desviación de frecuencia Δf=75 kHz. la FM se viene utilizando principalmente en las siguientes aplicaciones:

  • Televisión:
    • Subportadora de sonido: La información de sonido modula en frecuencia la subportadora de sonido, que posteriormente se une a las restantes componentes de la señal de TV para modular en AM la portadora del canal correspondiente y se filtra para obtener la banda lateral vestigial. El sonido NICAM es digital y no sigue este proceso.
    • SECAM: El sistema de televisión en color SECAM modula la información de color en FM.
  • Micrófonos inalámbricos: Debido a la mayor insensibilidad ante las interferencias, los micrófonos inalámbricos han venido utilizando la modulación de frecuencia.
  • Ayudas a la navegación aérea. Sistemas como el DVOR (VOR Doppler), simulan una antena giratoria que, por efecto Doppler, modula en frecuencia la señal transmitida.

Tecnología

Modulador de FM

La modulación de una portadora sobre FM, aunque se puede realizar de varias formas, resulta un problema delicado debido a que se necesitan dos características contrapuestas: estabilidad de frecuencia y que la señal moduladora varíe la frecuencia. Por ello, la solución simple de aplicar la señal moduladora a un oscilador controlado por tensión (VCO) no es satisfactoria.

  • Modulación del oscilador. En oscilador estable, controlado con un cristal piezoeléctrico, se añade un condensador variable con la señal moduladora (varactor). Eso varía ligeramente la frecuencia del oscilador en función de la señal moduladora. Como la excursión de frecuencia que se consigue no suele ser suficiente, se lleva la señal de salida del oscilador a multiplicadores de frecuencia para alcanzar la frecuencia de radiodifusión elegida.
  • Moduladores de fase. Un modulador de FM se puede modelar exactamente como un modulador de PM con un integrador a la entrada de la señal moduladora.
  • Modulador con PLL. Vuelve a ser el VCO, pero ahora su salida se compara con una frecuencia de referencia para obtener una señal de error, de modo que se tiene una realimentación negativa que minimiza dicho error. La señal de error se filtra para que sea insensible a las variaciones dentro del ancho de banda de la señal moduladora, puesto que estas variaciones son las que modulan la salida del VCO. Este método se ha impuesto con la llegada de los PLL integrados ya que ha pasado de ser el más complejo y costoso a ser muy económico. Presenta otras ventajas, como es poder cambiar de frecuencia para pasar de un canal a otro y mantiene coherentes todas las frecuencias del sistema...

Demodulador de FM

También es más complejo que el de AM. Se utilizan sobre todo dos métodos:

  • Discrimidador reactivo. Se basa en llevar la señal de FM a una reactancia, normalmente bobinas acopladas, de forma que su impedancia varíe con la frecuencia. La señal de salida aparece, entonces, modulada en amplitud y se detecta con un detector de envolvente. Existían vávulas específicas para esta tarea, consistentes en un doble-diodo-triodo. Los dos diodos forman el detector de envolvente y el triodo amplifica la señal, mejorando la relación señal/ruido.
  • Detector con PLL. La señal del PLL proporciona la señal demodulada. Existen muchas variaciones según la aplicación, pero estos detectores suelen estar en circuitos integrados que, además, contienen los amplificadores de RF y frecuencia intermedia. Algunos son una radio de FM completa (TDA7000).

Ecuación Característica

F_{fm}= \cos[w_ct + {\alpha}+ k_f \int f_{(t)} dt]

Ancho de banda

Al contrario que en el caso de Amplitud Modulada, que se concentra en la frecuencia portadora y dos bandas laterales, el ancho de banda de una señal de FM se extiende indefinidamente, cancelándose solamente en ciertos valores de frecuencia discretos. Cuando la señal moduladora es una sinusoide el espectro de potencia que se tiene es discreto y simétrico respecto de la frecuencia de la portadora, la contribución de cada frecuencia al espectro de la señal modulada tiene que ver con las funciones de Bessel de primera especie Jn.

A través de la regla de Carson es posible determinar el ancho de banda que se requiere para transmitir una señal modulada en FM (o PM).

Agustin Egui

CAF


Consider diffusion at the front and rear surfaces of an incremental planar volume. Fick's 2nd law of diffusion describes the rate of accumulation (or depletion) of concentration within the volume as proportional to the local curvature of the concentration gradient. The local rule for accumulation is given by Fick's 2nd law of diffusion:

in which the accumulation, dC/dt [cm-3 s-1], is proportional to the diffusivity [cm2/s] and the 2nd derivative (or curvature) of the concentration, [cm-3 cm-2] or [cm-5]. The accumulation is positive when the curvature is positive, i.e., when the concentration gradient is more negative on the front end of the planar volume and less negative on the rear end so that more flux is driven into the volume at the front end than is driven out of the volume at the rear end.



Incremental planar volume accumulates concentration because the front gradient at x1 drives more flux J1 into the volume than the flux J2 driven out of the volume by the rear gradient at x2.

The differential equation for optical diffusion is simply Fick's 2nd law with the substitution of the product cD for the diffusivity and substitution of F/c for concentration C, although the 1/c factors introduced on both sides of the equation cancel:

Los fenómenos de transporte tienen lugar en aquellos procesos, conocidos como procesos de transferencia, en los que se establece el movimiento de una propiedad ( masa, momentum o energía) en una o varias direcciones bajo la acción de una fuerza impulsora. Al movimiento de una propiedad se le llama flujo
Los procesos de transferencia de masa son importantes ya que la mayoría de los procesos químicos requieren de la purificación inicial de las materias primas o de la separación
final de productos y subproductos. Para esto en general, se utilizan las operaciones de transferencia de masa.
Con frecuencia , el costo principal de un proceso deriva de las separaciones ( Transferencia de masa). Los costos por separación o purificación dependen directamente de la
relación entre la concentración inicial y final de las sustancias separadas; sí esta relación es elevada, también serán los costos de producción.6
En muchos casos, es necesario conocer la velocidad de
transporte de masa a fin de diseñar o analizar el equipo industrial para operaciones unitarias, en la determinación de la eficiencia de etapa, que debe conocerse para determinar el número de etapas reales que se necesita para una separación dada.6
Algunos de los ejemplos del papel que juega la transferencia de masa en los procesos industriales son: la remoción de materiales contaminantes de las corrientes de descarga de los gases y aguas contaminadas, la difusión de neutrones dentro de los reactores nucleares, la difusión de sustancias al interior de
poros de carbón activado, la rapidez de las reacciones químicas catalizadas y biológicas así como el acondicionamiento del aire, etc.3
En la industria farmacéutica también ocurren procesos de transferencia de masa tal como la disolución de un fármaco, la transferencia de nutrientes y medicamento a la sangre, etc.
La ley de Fick es el modelo matemático que describe la transferencia molecular de masa, en sistemas o procesos donde puede ocurrir solo difusión o bien difusión mas convección. En este trabajo, una idea central será el cálculo de los coeficientes de transferencia de masa para diferentes sistemas(
estados de agregación de la materia ).

2. Fundamentos de la transferencia de masa

Definición General de la transferencia de masa
La transferencia de masa cambia la composición de soluciones y mezclasmétodos que no implican necesariamente reacciones químicas y se caracteriza por transferir una sustancia a través de otra u otras a escala
El proceso de transferencia molecular de masa, al igual que la transferencia de calor y de momentum están caracterizados por el mismo tipo general de ecuación
En esta ecuación la velocidad de transferencia de masa depende de una fuerza impulsora (diferencia de concentración) sobre una resistencia, que indica la dificultad de las moléculas para transferirse en el medio. Esta resistencia se expresa como una constante de proporcionalidad entre la velocidad de transferencia y la diferencia de concentraciones denominado: "Difusividad de masa". Un valor elevado de este parámetro significa que las moléculas se difunden fácilmente en el medio. mediante molecular. Cuando se ponen en contacto dos fases que tienen diferente composición, la sustancia que se difunde abandona un lugar de una región de alta concentración y pasa a un lugar de baja concentración.1,2,3

Clasificación general de la transferencia de masa.
El mecanismo de transferencia de masa, depende de la dinámica del sistema en que se lleva acabo.
Hay dos modos de transferencia de masa:

  1. molecular: La masa puede transferirse por medio del movimiento molecular fortuito en los fluidos ( movimiento individual de las moléculas ), debido a una diferencia de concentraciones. La difusión molecular puede ocurrir en sistemas de fluidos estancados o en fluidos que se están moviendo.
  2. convectiva: La masa puede transferirse debido al movimiento global del fluido. Puede ocurrir que el movimiento se efectúe en régimen laminar o turbulento. El flujo turbulento resulta del movimiento de grandes grupos de moléculas y es influenciado por las características dinámicas del flujo. Tales como densidad, viscosidad, etc.

Usualmente, ambos mecanismos actúan simultáneamente. Sin embargo, uno puede ser cuantitativamente dominante y por lo tanto, para el análisis de un problema en particular, es necesario considerar solo a dicho mecanismo. La transferencia de masa en sólidos porosos, líquidos y gases sigue el mismo principio, descrito por la ley de Fick.

3. Generalidades del transporte de masa molecular

Transferencia molecular de masa.
El transporte molecular ocurre en los 3 estados de agregación de la
materia y es el resultado de un gradiente de concentración, temperatura, presión, o de aplicación a la mezcla de un potencial eléctrico.
A la transferencia macroscópica de masa,
independiente de cualquier convección que se lleve acabo dentro de un sistema, se define con el nombre de difusión molecular ó ordinaria 2
El transporte molecular resulta de la transferencia de moléculas individuales a través de un fluido por medio de los movimientos desordenados de las moléculas debido a su energía interna. Podemos
imaginar a las moléculas desplazándose en líneas rectas con una velocidad uniforme y cambiando su dirección al rebotar con otras moléculas después de chocar. Entonces su velocidad cambia tanto en magnitud como en dirección. Las moléculas se desplazan en trayectorias desordenadas, y recorren distancias extremadamente cortas antes de chocar con otras y ser desviadas al azar. A la difusión molecular a veces se le llama también proceso de camino desordenado.2
En la figura 1 se muestra esquemáticamente el proceso de difusión molecular. Se ilustra la trayectoria desordenada que la molécula A puede seguir al difundirse del punto (1) al (2) a través de las moléculas de B.

Diagrama esquemático del proceso de difusión molecular
El mecanismo real de transporte difiere en gran medida entre gases, líquidos y sólidos, debido a las diferencias sustanciales en la estructura molecular de estos 3 estados físicos.3
Gases: los gases contienen relativamente pocas moléculas por
unidad de volumen. Cada molécula tiene pocas vecinas o cercanas con las cuales pueda interactuar y las fuerzas moleculares son relativamente débiles; las moléculas de un gas tienen la libertad de moverse a distancias considerables antes de tener colisiones con otras moléculas. El comportamiento ideal de los gases es explicado por la teoría cinética de los gases.
Líquidos: los líquidos contienen una concentración de moléculas mayor por unidad de volumen, de manera que cada molécula tiene varias vecinas con las cuales puede interactuar y las fuerzas intermoleculares son mayores. Como resultado, el movimiento molecular se restringe más en un líquido. La migración de moléculas desde una región hacia otra ocurre pero a una velocidad menor que en el caso de los gases. Las moléculas de un líquido vibran de un lado a otro, sufriendo con frecuencia colisiones con las moléculas vecinas.
Sólidos: En los sólidos , las moléculas se encuentran más unidas que en los líquidos; el movimiento molecular tiene mayores restricciones. En muchos sólidos, las fuerzas intermoleculares son suficientemente grandes para mantener a las moléculas en una distribución fija que se conoce como red cristalina.

Ecuación general del transporte molecular
La ecuación general de transporte molecular puede obtenerse a partir de un
modelo gaseoso simple (teoría cinética de los gases). La ecuación resultante derivada de este modelo puede ser aplicada para describir los procesos de transporte molecular de cantidad de movimiento, calor y de masa, en gases, líquidos y sólidos1

Y neto = I (1) Ecuación general del transporte molecular

Y = Densidad de flujo ( flujo por unidad de área kmol / s m2)

= Velocidad promedio de las moléculas de un gas m/s .

I = Recorrido libre medio de las moléculas en m

dG / dz = incremento de la concentración en la dirección z

Según la ecuación (1), para que la densidad de flujo Y sea positiva, el gradiente dG /dz tiene que ser negativo.
Ley de Fick para la difusión molecular
Para el caso de la tranferencia de masa, la aplicación de la ecuación general de transporte molecular es la ley de Fick para transporte molecular exclusivamente. Por analogía ente ambas ecuaciones, el gradiente dG /dz es el gradiente de concentraciones, el término I es la difusividad de masa y el término Y neto es el flujo de masa. La rapidez con la cual un componente se transfiere de una
fase a otra depende del coeficiente llamado transferencia de masa.. El fenómeno de difusión molecular conduce finalmente a una concentración completamente uniforme de sustancias a través de una solución que inicialmente no era uniforme. La transferencia termina cuando se alcanza el equilibrio1

Los coeficientes de transferencia de masa tienen mucha importancia, por que al regular la rapidez con la cual se alcanza el equilibrio, controlan el tiempo que se necesita para la difusión.
Los coeficientes de rapidez para los diferentes componentes en una fase dada difieren entre si en mayor grado bajo condiciones en donde prevalece la difusión molécular. En condiciones de turbulencia, en que la difusión molecular carece relativamente de importancia, los coeficientes de transferencia se vuelven mas parecidos para todos los componentes. 1

Ecuación de rapidez de Fick para la difusión molecular
Considerando una mezcla binaria A y B, y si el número de moléculas de A en un volúmen dado en una región , es mayor que en otra región
vecina, entonces de acuerdo con la ecuación (1) tendrá lugar la migración de moléculas de A a través de B, desde la zona de mayor concentración hacia la de menor concentración

Por lo tanto, la ecuación de la ley de Fick para una mezcla de dos componentes A y B es:

= - C DAB

donde c es la concentración de A y B en mol Kg de (A + B) / m3
xA es la fracción mol de A en la mezcla de A y B
JAZ es el flujo de masa en molKg/(seg m2)
Sí c es constante, tenemos que cA = cxA
cdxA = d ( cxA ) = dcA

Entonces, para una concentración total constante

= - C DAB (2)

De acuerdo con la ecuación de transporte molecular(1) DAB = 1/6 I por lo que sus unidades son m2 / seg
Por lo tanto, la difusividad, o coeficiente de difusión, DAB de un componente A en una solución B, es una constante de proporcionalidad entre el flujo de masa y el gradiente de concentración. El gradiente de concentración puede considerarse por consiguiente como una fuerza impulsora. La magnitud numérica de la difusividad indica la facilidad con que el componente A se transfiere en la mezcla. Si la difusividad tiene un
valor elevado, entonces hay mucha facilidad para el transporte de masa.. El flujo del componente A se mide con relación a la velocidad molar promedio de todos los componentes.
El signo negativo hace hincapié que la difusión ocurre en el sentido del decremento en concentración, y el gradiente es negativo, pero el flujo de masa debe ser positivo. La difusividad es una característica de un componente y su entorno (temperatura, presión, concentración; ya sea en solución líquida, gaseosa o sólida y la naturaleza de los otros componentes)

Ecuación general de Fick expresada para un sistema con flujo
Hasta ahora se ha considerado la ley de Fick para la difusión en un fluido estacionario; es
decir , no ha habido un movimiento neto ( o flujo convectivo ) de la totalidad de la mezcla A y B. El flujo específico de difusión JAZ se debe en este caso al gradiente de concentración. La velocidad a la cual los moles de A pasan por un punto fijo hacia la derecha, lo cual se tomará como flujo positivo. Este flujo puede transformarse en una velocidad de difusión de A hacia la derecha por medio de la expresión.3

JAZ = n AdcA (3)

Donde n Ad es la velocidad de difusión de A en m/seg
Considerando ahora lo que sucede cuando la totalidad del fluido se mueve con un flujo general o convectivo hacia la derecha. La velocidad molar promedio de la totalidad del fluido con respecto a un punto estacionario es n M m/seg. El componente A sigue difundiéndose hacia la derecha, pero ahora su velocidad de difusión n Ad se mide con respecto al fluido en movimiento. Para un observador estacionario, A se desplaza con mayor rapidez que la fase total, pues su velocidad de difusión n Ad se añade a la fase total n M. Expresada matemáticamente, la velocidad de A con respecto al punto estacionario es la suma de la velocidad de difusión y de la velocidad convectiva o promedio2.
n A = n Ad + n M (4)

Donden A es la velocidad de A con respecto al punto estacionario. Expresándolo esquemáticamente:
n A
n Ad n M

Multiplicando la ecuación (4) por cA
cAn A = cAn Ad + cAn M (5)

Cada uno de estos 3 componentes es un flujo específico. El primer término cAn A puede representarse con el flujo NA en mol kg A / seg. m2. Este es el flujo total de A con respecto al punto estacionario. El segundo término es JAZ ,esto es, el flujo específico de difusión con respecto al fluido en movimiento. El tercer término es el flujo convectivo de A con respecto al punto estacionario. Por consiguiente , la ecuación (5) se transforma en:
NA = JAZ + cAn M (6)

Sea N el flujo convectivo total de la corriente general con respecto al punto estacionario. Entonces:
NA = cn M = NA + NB (7)

Despejando n M
n M = NA + NB / c (8)

Sustituyendo la ecuación (8) en la ecuación (6)
NA = JAZ + ( NA + NB ) (9)

Puesto que JAZ es la ley de Fick, por lo tanto la ecuación (9) se transforma en la expresión general para difusión mas convección2.

NAZ = xA( NAZ + NBZ ) – DAB C (10)

NAZ = densidad de flujo con respecto a ejes fijos

-DAB C = densidad de flujo que resulta de la difusión

xA ( NAZ + NBZ ) = densidad de flujo que resulta del flujo global

La cual describe la difusión a través de una superficie fija en el espacio; en esta ecuación, los efectos del flujo global y el de la difusión molecular están representados por el primer y segundo término respectivamente.
Desde el punto de vista matemático, esta ecuación posee una estructura vectorial, y la dirección del flujo global por unidad de área, o sea, el primer término coincide con la dirección del gradiente . El signo negativo del segundo término solo indica una disminución de la concentración, dada por xA en la dirección del gradiente.

4. Determinación de coeficientes de difusión

Una vez analizada la ley de Fick, se observa la necesidad de disponer de valores numéricos del parámetro difusividad. En las siguientes secciones se discutirán sus diversos métodos de cálculo.

Difusividad de gases
La difusividad, o coeficiente de difusión es una propiedad del sistema que depende de la temperatura , presión y de la naturaleza de los componentes. Las
expresiones para calcular la difusividad cuando no se cuenta con datos
Hirschfelder, Bird y Spotz, utilizando el potencial de Lennard Jones para evaluar la influencia de las fuerzas intermoleculares, encontraron una ecuación adecuada al coeficiente de difusión correspondiente a parejas gaseosas de moléculas no polares, no reactivas a temperaturas y presiones moderadas. Conocida como la ecuación de Chapman-Enskog1,2,5 experimentales, están basadas en la teoría cinética de los gases.

DAB = difusividad de la masa A, que se difunde a través de B en cm2/seg
T = temperatura absoluta en grados kelvin
MA, MB = son los
pesos moleculares de A y B
P = Presión Absoluta en atmósferas
s AB = Es el "diámetro de colisión" en Angstroms ( constante de la función de Lennard-
Jones de energía potencial para el par de moléculas AB )
W D = Es la integral de colisión correspondiente a la difusión molecular , que es función
una función adimensional de la temperatura y el
campo potencial intermolecular correspondiente a una molécula A Y B
Puesto que se usa la función de Lennard-Jones de energía potencial , la ecuación es estrictamente válida para gases no polares. La constante para el par de molecular desigual AB puede estimarse a partir de los valores para los pares
iguales AA y BB

s AB = 1/2 ( s A + s B ) (12)

e AB = ( e Ae B )1/2 (13)

W D se calcula en función de KT/e AB donde K es la constante de Boltzmann y e AB es la energía de interacción molecular correspondiente al sistema binario AB
Hay tablas y apéndices que tabulan estos
valores. En ausencia de datos experimentales, los valores de los componentes puros se pueden calcular a partir de las siguientes relaciones empíricas.
s = 1.18 Vb1/3 (14)
s = 0.841 VC1/3 (15)

s = 2.44 1/3 (16)

Donde:
Vb = volúmen molecular en el punto normal de ebullición, en cm3 / g mol
Vc = volúmen molecular crítico, en cm3 / g mol
Tc = temperatura crítica en grados kelvin
Pc = presión crítica en atmósferas

Para presiones superiores a 10 atmósferas, esta ecuación ya no es apropiada y es necesario usar las graficas obtenidas de la ley de estados correspondientes.
A presiones elevadas, la difusividad DAB puede determinarse por medio de la figura 2 En realidad , este gráfico ha sido construido con datos de coeficientes de difusividad para el caso de la autodifusión, donde (PDAA)0 de la ordenada corresponde a valores para la temperatura de
trabajo y presión atmosférica. Esta relación fue obtenida por Slattery y propuesta por Bird

Fig. 2 Relación generalizada de la difusividad en función de las temperaturas y presiones reducidas en procesos de autodifusión de gases a altas presiones
En el libro de Bird se sugiere que, en ausencia de datos experimentales o información de la literatura, la figura 2 puede emplearse para predecir DAB utilizando
propiedades seudocríticas, pero se advierte que el procedimiento debe considerarse como provisional, ya que existen pocos datos experimentales para comprobarlo.1

Difusividades en líquidos
La velocidad de difusión molecular en líquidos es mucho menor que en gases. Las moléculas de un líquido están muy cercanas entre sí en comparación con las de un gas; la densidad y la resistencia a la difusión de un líquido son mucho mayores, por tanto, las moléculas de A que se difunde chocarán con las moléculas de B con más frecuencia y se difundiran con mayor lentitud que en los gases. Debido a esta proximidad de las moléculas las fuerzas de atracción entre ellas tiene un
efecto importante sobre la difusión. En general, el coeficiente de difusión de un gas es de un orden de magnitud de unas 10 veces mayor que un líquido.2

Ecuaciones para la difusión en líquidos
La teoría cinético-molecular de los líquidos está mucho menos desarrollada que la de los gases. Por esta
razón , la mayor parte de los conocimientos referente a las propiedades de transporte se han obtenido experimentalmente. Se han elaborado varias teorías y modelos , pero los resultados de las ecuaciones obtenidas aún presentan desviaciones notables con respecto a los datos experimentales.
En la difusión de líquidos, una de las diferencias mas notorias con la difusión en gases es que las difusividades suelen ser bastante dependientes de la concentración de los componentes que se difunden.2,6

Predicción de las difusividades en líquidos
Las ecuaciones para predecir difusividades de solutos diluidos en líquidos son semiempìricas por necesidad, pues la teoría de la difusión en líquidos todavía no esta completamente explicada. Una de las primeras teorías es la ecuación de Stokes-Einstein que se obtuvo para una molécula esférica muy grande de ( A ) difundiéndose en un disolvente lìquido ( B ) de moléculas pequeñas.
Se uso esta ecuación para describir el retardo en la molécula mòvil del soluto. Después se modificò al suponer que todas las moléculas son iguales, que estàn distribuidas en un retículo cúbico y expresando el radio molecular en términos de volumen molar.
9.96 x 10 – 12 T
DAB = (17)
V 1/3ª
donde:
DAB = es la difusividad en m2 / seg.
T = es la temperatura en ºK
 = es la viscosidad de la solución en cp
VA = es el volumen molar del soluto a su punto de ebullición normal en
cm3/mol g
La ecuación es bastante exacta para moléculas de solutos muy grandes y sin hidratación, de
peso molecular 1000 o más o para los casos en los que VA está por encima de unos 500 cm3 / mol en solución acuosa.
Esta ecuación no es válida para solutos de volúmenes molares pequeños. Se han intentado obtener otras deducciones teóricas, pero las fórmulas obtenidas no predicen difusividades con precisión razonable. Debido a esto, se han desarrollado diversas expresiones semiteóricas.
La correlación de Wilke-Chang puede usarse para la mayoría de los propósitos generales cuando el soluto (A) está diluido con respecto al disolvente (B).

T
DAB = 7.4 x 10-12 ( j MB)1 / 2 (18)
m B VA0.6
DAB = coeficiente de difusión mutua del soluto A a muy baja concentración
en el solvente B en m2/seg
j = Parámetro de asociación del solvente B
MB = masa molecular de B
T = Temperatura en grados Kelvin
m B = viscosidad dinámica de B en cp
VA = volumen molar del soluto en su punto normal de ebullición, m3/ mol kg

Volúmenes moleculares a la temperatura del punto normal de ebullición de algunos compuestos comunes

Difusión molecular en sólidos
La difusión es el movimiento de los átomos en un material. Los átomos se mueven de manera ordenada, tendiendo a eliminar las diferencias de concentración y producir una composición homogénea del material.7
En cualquier
estudio del movimiento molecular en el estado sólido, la explicación de la transferencia de masa se divide automáticamente en 2 campos mayores de interés:

  • La difusión de gases o líquidos en los poros del sólido
  • La autodifusión de los constituyentes de los sólidos por medio del movimiento atómico.

La difusión en los poros se puede llevar a cabo por medio de tres o más mecanismos:

  • Difusión de Fick: si los poros son grandes y el gas relativamente denso, la transferencia de masa se llevará a cabo por medio de la difusión de Fick.
  • Difusión Knudsen: Ocurre cuando el tamaño de los poros es de el orden de la trayectoria media libre de la molécula en difusión; es decir si el radio del poro es muy pequeño, las colisiones ocurrirán principalmente entre las moléculas del gas y las paredes del poro y no entre las propias moléculas. La difusividad Knudsen depende de la velocidad molecular y del radio del poro7,8

Expresión para evaluar la difusividad knudsen en un poro circular con un radio a

=9.70 x 103 a (19)

Donde esta en cm2/seg, a esta en cm. y T en grados kelvin

  • Difusión superficial: Esta tiene lugar cuando las moléculas que se han absorbido son transportadas a lo largo de la superficie como resultado de un gradiente bidimensional de concentración superficial.

En la difusión superficial las moléculas una vez absorbidas pueden transportarse por desorción en el espacio poroso o por migración a un punto adyacente en la superficie8
Hay varios mecanismos de autodifusión por los cuales se difunden los átomos ( fig. 3 ) :

  • Difusión por vacantes: que implica la sustitución de átomos , un átomo deja su lugar en la red para ocupar una vacante cercana (creando un nuevo sitio vacío en su posición original en la red). Se presenta un reflujo de átomos y vacantes.
  • Difusión intersticial: Un átomo se mueve de un intersticio a otro. Este mecanismo no requiere de vacantes para llevarse acabo. En ocasiones un átomo sustitucional deja su lugar en la red normal y se traslada a un intersticio muy reducido.
  • Difusión intersticial desajustada: Es poco común, debido a que el átomo no se ajusta o acomoda fácilmente en el intersticio, que es más pequeño.
  • Intercambio simple: Puede darse el intercambio simple entre átomos o por medio del mecanismo cíclico( desplazamiento circular ). 7

Fig. 3 .- Movimiento de los átomos en los materiales

Difusividades binarias de los sólidos

5. Conclusiones

El estudio de la transferencia de masa es importante en la mayoría de los procesos químicos que requieren de la purificación inicial de materias primas y la separación de productos y subproductos, así como para determinar los costos, el análisis y diseño del equipo industrial para los procesos de separación
El transporte molecular de momentum, calor y masa es descrito por la ley general del transporte molecular, deducida a partir de la teoría cinética de los gases y están caracterizados por el mismo tipo general de ecuación
La velocidad de rapidez de Fick es el modelo matemático que describe el transporte molecular de masa en procesos o sistemas donde ocurre la difusión ordinaria, convectiva o ambas
La difusividad de masa es un parámetro que indica la facilidad con que un compuesto se transporta en el interior de una mezcla, ya en gases, líquidos y sólidos
El transporte molecular de masa ocurre usualmente debido a un gradiente de concentración, pero en algunas ocasiones es debido a un gradiente de temperatura, presión o por la acción de una fuerza impulsora
El mecanismo real de transporte difiere en gran medida entre gases, líquidos y sólidos debido a las diferencias sustanciales en la estructura molecular de los 3 estados físicos
Las moléculas gaseosas se difunden con mayor facilidad que las moléculas de líquido debido a que las moléculas de gas tienen pocas moléculas vecinas con las que pueda interactuar y las fuerzas son relativamente débiles; en los sólidos las fuerzas intermoleculares son suficientemente grandes para mantener a las moléculas en una
distribución fija.
Por lo tanto los gases se difunden con mayor facilidad que los líquidos y los sólidos
Los mecanismos de difusión en sólidos se dividen en dos grandes campos: la difusión de líquidos y gases en los poros de un sólido y la autodifusión de los constituyentes de los sólidos por movimiento atómico